Sex Differences in a Rat Model of Risky Decision Making

Caitlin A. Orsini, Markie L. Willis, Ryan J. Gilbert, Jennifer L. Bizon, and Barry Setlow
University of Florida College of Medicine

Many debilitating psychiatric conditions, including drug addiction, are characterized by poor decision making and maladaptive risk-taking. Recent research has begun to probe this relationship to determine how brain mechanisms mediating risk-taking become compromised after chronic drug use. Currently, however, the majority of work in this field has used male subjects. Given the well-established sex differences in drug addiction, it is conceivable that such differences are also evident in risk-based decision making. To test this possibility, male and female adult rats were trained in a risky decision making task (RDT), in which they chose between a small, “safe” food reward and a large, “risky” food reward accompanied by an increasing probability of mild footshock punishment. Consistent with findings in human subjects, females were more risk averse, choosing the large, risky reward significantly less than males. This effect was not due to differences in shock reactivity or body weight, and risk-taking in females was not modulated by estrous phase. Systemic amphetamine administration decreased risk-taking in both males and females; however, females exhibited greater sensitivity to amphetamine, suggesting that dopaminergic signaling may partially account for sex differences in risk-taking. Finally, although males displayed greater instrumental responding for food reward, reward choice in the RDT was not affected by satiation, indicating that differences in motivation to obtain food reward cannot fully account for sex differences in risk-taking. These results should prove useful for developing targeted treatments for psychiatric conditions in which risk-taking is altered and that are known to differentially affect males and females.

Keywords: risk, decision-making, sex differences, reward
footshock; Mitchell, Vokes, Blankenship, Simon, & Setlow, 2011; Simon, Gilbert, Mayse, Bizon, & Setlow, 2009; Simon et al., 2011). In previous work with this model, we have shown that male rats decrease their choice of the risky option as the risk of punishment increases (Orsini, Trotta, Bizon, & Setlow, 2015; Simon et al., 2011). Further, we have shown that high levels of risk-taking predict greater cocaine intake and that chronic cocaine self-administration causes long-lasting increases in risk-taking (Mitchell et al., 2009). Further, we have shown that high levels of risk-taking in decision making involving risk of explicit punishment. (Mitchell et al., 2014). It is unclear, however, if under drug-naïve conditions, females perform comparably with males when faced with the risk of adverse consequences. The experiments described below were designed to determine whether there are sex differences in decision making involving risk of explicit punishment.

Materials and Methods

Subjects

Male and female Long-Evans rats (n = 16 male; n = 16 female; 60 days old; Charles River Laboratories, Raleigh, NC) were individually housed and kept on a 12-hr light/dark cycle (lights on at 07:00) with access to water and food ad libitum except as noted. Rats were trained in two cohorts, each with n = 8 male and n = 8 female. Prior to the start of behavioral testing, rats were handled 2–3 times a week to habituate them to the experimenters. During all behavioral procedures, rats were food restricted to 85% of their free-feeding weight. This was determined by calculating 85% of their free-feeding weight measured just prior to food restriction (1 week prior to the commencement of behavioral testing). Prior to restriction, males weighed 304.6 ± 2.1 g (mean ± SEM), and females weighed 215.6 ± 3.3 g. To account for growth during periods of restriction, rats’ target weights were adjusted upward by 5 g per week. Rats were tested 5 days per week between 09:00 and 12:00. Animal procedures were conducted in accordance with the University of Florida Institutional Animal Care and Use Committee and followed guidelines of the National Institutes of Health.

Apparatus

Behavioral sessions were conducted in eight computer-controlled behavioral test chambers (Coulbourn Instruments). Each chamber was housed in a sound-attenuating cabinet and was outfitted with a recessed food pellet delivery trough with a photobeam to detect nosepokes into the trough and a 1.12-W lamp to illuminate the trough, into which 45 mg grain-based food pellets (Test Diet; STUM) could be delivered. The trough was located 2 cm above the floor in the center of the front wall of the chamber. Two retractable levers were located to the left and right of the food trough and were positioned 11 cm above the floor of the chamber. A 1.12-W houselight was mounted on the rear wall of the sound-attenuating cabinet. The floor of the chamber consisted of stainless steel rods coupled to a shock generator (Coulbourn Instruments), which delivered scrambled footshocks. An activity monitor was positioned above each test chamber to monitor locomotor activity throughout each behavioral session. This monitor consisted of an array of infrared (body heat) detectors focused over the entire test chamber. Movement in the test chamber (in x, y, or z planes) was defined as a relative change in the infrared energy falling on the different detectors. The test chambers were interfaced with a computer running Graphic State 3.0 software (Coulbourn Instruments), which controlled task event delivery and data collection. The same test chambers were used for both males and females, and chambers were cleaned with a dilute chlorhexidine solution after each rat. Rats in each cohort were run in two squads of 8 rats each, with the order of male and female rats tested in each chamber counterbalanced across squads.

Behavioral Procedures

Overview of experimental design. The experimental design is depicted in Figure 1. Upon arrival, rats were trained in the RDT for 25–34 days, at which point stable behavior emerged. In the first cohort of rats (n = 8 male and 8 female), vaginal swabs were taken from females immediately after each session to track their estrous

Figure 1. Schematic of experimental design. In the first cohort of rats, males and females were initially shaped on the various components of the task, after which they were trained in the RDT until stable performance emerged. Rats then received systemic administration of amphetamine (0, 0.3, 1.0, 1.5 mg/kg) 10 min prior to RDT testing. Finally, they were tested on various fixed ratio (FR) schedules of lever pressing for food reward. As with the first cohort, the second cohort of rats was shaped and trained in the RDT until stable behavior emerged. Shock intensities in the RDT were then adjusted for body weight (1.0 mA/g); rats were tested in the RDT with adjusted shock intensities until behavioral stability. Finally, rats were then given free access to food for 24 hr followed by testing in the RDT.
cycle over the course of testing. The same cohort was then used to test the effects of acute amphetamine administration on RDT performance. In this set of experiments, the shock intensity was kept constant across all rats (0.25–0.3 mA). Finally, these rats were tested on various fixed ratio (FR) schedules of lever pressing for food reward. As with RDT training, vaginal swabs were taken from each female after each FR session. During this time, rats were run on each FR schedule for as long as it took to ensure that each phase of the estrous cycle was represented.

Once stable performance emerged in the second cohort of rats (n = 8 male and 8 female), shock intensity was then titrated for each rat according to its body weight (1.0 mA/kg). Rats were trained using these procedures until stable behavior was obtained (18 sessions). All rats were then returned to the same shock intensity (0.25 mA) and tested in the RDT for 5 days. At this point, rats were given free access to food for 24 hr followed by testing in the RDT.

**RDT.** Prior to training on the RDT, rats were shaped to perform the various task components (nosepoking into the food trough and lever pressing for food delivery) as described previously (Mitchell et al., 2011; Simon et al., 2009; Simon & Setlow, 2012). Each daily session in the RDT was 60 min in duration and consisted of five 18-trial blocks. Each 40-s trial began with illumination of the houselight and the food trough light. A nosepoke into the food trough extinguished the trough light and triggered extension of either a single lever (forced choice trial) or both levers simultaneously (free choice trial). If rats failed to nosepeck within 10 s, both the house and trough lights were extinguished, and the trial was scored as an omission. A press on one lever resulted in a small, safe food reward (1 food pellet), whereas a press on the other lever resulted in a large, risky food reward (2 pellets) that was accompanied by a possible 1-s footshock contingent on a preset probability that was specific to each trial block. For all experiments except that in which shock intensity was titrated by body weight, the intensity was kept lower (0.25–0.30 mA) than in previous studies with only male rats (Mitchell et al., 2011; Shimp, Mitchell, Beas, Bizon, & Setlow, 2015; Simon et al., 2009; Simon et al., 2011). This was done to avoid floor effects on choice behavior in female rats, as we initially hypothesized that females would be more sensitive to the shock than males. Rats began training in the RDT at a shock intensity of 0.25 mA, which increased to 0.3 mA by the time behavior had stabilized (25 days for cohort 1 and 34 days for cohort 2). The probability of footshock was set at 0% in the first block of trials and increased across successive blocks (25%, 50%, 75%, and 100%, respectively). The large food reward was delivered upon every choice of the risky lever, irrespective of shock delivery. The left/right positions of the safe and risky levers were counterbalanced across rats, but for each rat, the lever identities remained the same throughout the course of testing. Each block of trials began with 8 forced choice trials in which the shock contingencies in effect for that block were established (4 presentations of each lever, randomly presented), and were followed by 10 free choice trials. If rats failed to lever press in 10 s, the levers were retracted, and the lights extinguished and the trial was scored as an omission. Food delivery was accompanied by reillumination of the houselight and food trough light, which were extinguished after collection of the food pellets or after 10 s, whichever occurred sooner. On the forced choice trials (in which only one lever was present), the probability of shock following a press on the large reward lever was dependent across the four trials in each block. For example, in the 25% risk block, one and only one of the four forced choice trials (randomly selected) always resulted in shock, and in the 75% risk block, three and only three of the four forced choice trials always resulted in shock. In contrast, the probability of shock on the free choice trials (in which both levers were present) was independent, such that the probability of shock on each trial was the same, irrespective of shock delivery on previous trials in that block.

**Fixed ratio schedules of reinforcement.** To assess motivation to obtain food reward, rats were given the opportunity to press a single lever for food delivery (1 pellet) under fixed ratio (FR) schedules (FR1, FR3, FR10, and FR20). Because previous work has demonstrated that estrous phase influences responding for rewards (Anker & Carroll, 2010; Dreher et al., 2007; Sakaki & Mather, 2012), rats were tested on each FR schedule until each estrous phase for each female was represented for a particular ratio. Thus, rats were tested on FR1 for 6 days, on FR3 for 9 days, on FR10 for 12 days, and on FR20 for 9 days. If an estrous phase occurred more than once within a FR schedule, the lever presses for each FR session of that schedule were averaged for that estrous phase. Each FR session (30 min) occurred once a day, and sessions were presented in ascending order.

**Estrous Cycle Assessments**

In female rats, ovulation occurs every 4–5 days and begins with the met-estrus phase (14–18 hr), in which follicles develop in the ovaries. This is followed by the di-estrus phase, which lasts 60–70 hr, and then the preovulatory, or proestrus phase, lasting 12 hr. As estradiol increases during the proestrus phase, the female enters into the estrus phase, which is the period of sexual receptivity and ovulation. To determine whether estrous cycle influences behavior in the RDT and FR schedules of reinforcement, all females were smeared with vaginal lavages immediately after each behavioral session. Samples were placed on microscope slides and examined with light microscopy (5×). Each of the four phases of the estrous cycle was identified using specific criteria (Marcondes, Bianchi, & Tanno, 2002): (1) proestrus: the majority of cells were nucleated epithelial cells, (2) estrus: the majority of cells were cornified epithelial cells, (3) met-estrus: cells contained both cornified epithelial cells and leukocytes, and (4) di-estrus: majority of cells were leukocytes, with a few nucleated epithelial cells.

**Drugs**

To assess the effects of acute amphetamine on risk-taking in male and female rats, d-amphetamine sulfate (0, 0.3, 1.0, and 1.5 mg/kg in 0.9% saline vehicle; Drug Supply Program at the National Institute on Drug Abuse) was administered systemically 10 min prior to RDT test sessions every other day using a within-subjects, Latin square design as in our previous work (Mitchell et al., 2011; Simon et al., 2011).

**Data Analysis**

Raw data files were extracted from Graphic State software and compiled using a custom macro written for Microsoft Excel (Dr. Jonathan Lifshitz, University of Kentucky). Compiled data
were analyzed using Statistical Package for the Social Sciences (SPSS) 22.0. Choice performance in each block of the RDT was measured as the percentage of free choice trials (out of the total number of completed trials, excluding omissions) on which a rat chose the large reward in each trial block. To determine stable behavioral performance on the RDT, a repeated measures analysis of variance (ANOVA; RDT session × Trial block) was conducted on free choice trials from 5 consecutive sessions. Stable performance was defined as the absence of either a main effect of session or interaction between session and trial block in this analysis (Simon & Setlow, 2012; Winstanley, Theobald, Cardinal, & Robbins, 2004). Effects of sex on free choice trials (averaged across 5 consecutive sessions of stable performance) were determined using a two-factor repeated measures ANOVA with trial block as the within-subjects factor and sex as the between-subjects factor. Choice response latencies were measured as the interval between lever extension and lever press, excluding trials on which rats failed to press the lever altogether (omissions). Forced choice trials were used to assess response latencies because of insufficient data from free choice trials (i.e., some rats chose one lever exclusively on some blocks of free choice trials). In addition, latencies on the forced choice trials provided a measure of incentive motivation for the rewards that was relatively uncontaminated by comparative reward values or decision processes (Giertler, Bohn, & Hauber, 2003; Orsini, Trotta et al., 2015; Schoenbaum, Setlow, Sodridoris, & Gallagher, 2003; Shimp et al., 2015). Effects of sex on forced choice trial latencies were analyzed using a three-factor repeated measures ANOVA (Sex × Trial block × Lever identity). Baseline locomotor activity was measured by averaging activity (in arbitrary units) across all intertrial intervals (in which no lights or levers were present). Shock reactivity was defined as activity during the 1-s shock delivery periods, averaged across the entire test session. The effects of amphetamine on risk-taking were analyzed using a three-factor repeated measures ANOVA (Sex × Drug dose × Trial block). Lever pressing in the FR schedules of reinforcement was analyzed using a two-factor repeated measures ANOVA (Sex × FR schedule), with post hoc comparisons conducted on each FR schedule.

### Results

#### Effects of Sex on Risky Decision Making

Rats in both cohorts were trained in the RDT for 25–34 days, at which point choice performance was stable. Day, F(4, 120) = 0.80, p = .53; Block, F(4, 120) = 19.16, p < .001; Day × Block, F(16, 480) = 1.15, p = .31, in both males and females. Day × Block × Sex, F(16, 480) = 1.33, p = .71. At the time of stable RDT performance, males weighed (mean ± SEM) 303 ± 2.5 g, and females weighed 222 ± 1.9 g. Final RDT performance was assessed during the last 5 (stable) days of training (Figure 2A). There was a significant main effect of sex, F(1, 30) = 5.20, p = .03, such that females chose the large, risky reward significantly less than males. In addition, there was a significant Sex × Block interaction, F(4, 120) = 6.90, p < .001: male rats predominantly chose the large, risky reward across all blocks, whereas females displayed a steep reduction in choice of the large, risky reward across trial blocks. Importantly, there was a significant main effect of block in both males and females when analyzed separately, males: F(4, 60) = 2.7, p = .04; females: F(4, 60) = 17.1, p < .001, indicating that both sexes were sensitive to the increasing risk of punishment during the task. Interestingly, the observed sex difference was evident as early as the first 5 days of training in the task, main effect of Sex, F(1, 30) = 6.7, p = .01; Block × Sex interaction, F(1, 30) = 8.0, p = .01. Although performance at this point was not yet stable, these data suggest that the differences in risk-taking were not likely due to differences between males and females in acquisition of the task contingencies. Note that the high levels of preference for the large reward in males in this experiment compared with those in our previous work (Mitchell et al., 2011; Shimp et al., 2015; Simon et al., 2009; Simon et al., 2011) were likely due to the relatively low shock intensity (see Methods). Consistent with their risk-averse behavior, females made significantly more omissions than males in the RDT, main effect of Sex, Table 1, F(1, 30) = 14.02, p < .01. However, there were no significant differences between males and females in their reactivity to shock delivery, Table 1, Sex, F(1, 23) = 1.22, p = .28; Sex × Block, F(3, 69) = 0.65, p = .59. In contrast, males were more active during intertrial intervals than females, as there was a main effect of Sex, Table 1, F(1, 30) = 7.5, p = .01, and a

![Figure 2](image-url)
significantly more risk averse than males, but that their choice behavior is unaffected by estrous cycle. Sex significantly more than males and showed less locomotor activity than males. When shocks were adjusted for body weight, females still omitted significantly more trials than males. This difference in trial omissions was also observed across all doses of amphetamine. At the 1.0 and 1.5 mg/kg doses of amphetamine, females displayed significantly less locomotor activity during shock delivery than males. Finally, there was a significant Sex × Dose interaction on shock reactivity, such that females showed significantly less locomotor activity during shock delivery relative to males at the highest dose of amphetamine. Asterisks indicate a significant difference between males and females. A cross indicates a significant Sex × Dose interaction.

<table>
<thead>
<tr>
<th>Session</th>
<th>% Omitted trials</th>
<th>Locomotion (locomotor units/ITI)</th>
<th>Shock reactivity (locomotor units/shock)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RDT with equal shock magnitude</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>3.4 (1.9)*</td>
<td>16.6 (1.7)*</td>
<td>2.6 (0.2)</td>
</tr>
<tr>
<td>Female</td>
<td>15.2 (2.5)*</td>
<td>11.3 (0.9)*</td>
<td>2.3 (0.3)</td>
</tr>
<tr>
<td>RDT with adjusted shocks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>0.3 (0.2)*</td>
<td>18.6 (2.7)</td>
<td>N/A</td>
</tr>
<tr>
<td>Female</td>
<td>10.1 (4.1)*</td>
<td>13.6 (2.5)</td>
<td>N/A</td>
</tr>
<tr>
<td>Amphetamine vehicle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>5.8 (4.5)</td>
<td>17.5 (2.9)</td>
<td>2.8 (0.3)</td>
</tr>
<tr>
<td>Female</td>
<td>18.0 (5.3)</td>
<td>14.2 (1.8)</td>
<td>2.1 (0.3)</td>
</tr>
<tr>
<td>0.3 mg/kg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>4.5 (3.2)*</td>
<td>21.2 (3.2)</td>
<td>2.5 (0.3)</td>
</tr>
<tr>
<td>Female</td>
<td>16.3 (4.4)*</td>
<td>17.2 (2.1)</td>
<td>2.2 (0.4)</td>
</tr>
<tr>
<td>1.0 mg/kg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>7.3 (3.6)*</td>
<td>23.8 (2.9)</td>
<td>2.5 (0.3)*</td>
</tr>
<tr>
<td>Female</td>
<td>31.0 (6.8)*</td>
<td>24.7 (4.0)</td>
<td>1.2 (0.3)*</td>
</tr>
<tr>
<td>1.5 mg/kg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>14.8 (3.4)*</td>
<td>25.8 (2.1)</td>
<td>2.1 (0.4)*</td>
</tr>
<tr>
<td>Female</td>
<td>66.8 (9.4)*</td>
<td>22.6 (2.4)</td>
<td>0.3 (0.2)*†</td>
</tr>
</tbody>
</table>

Note. In the risky decision-making task (RDT) with the same shock magnitudes for all rats, females omitted significantly more than males and showed less locomotor activity than males. When shocks were adjusted for body weight, females still omitted significantly more trials than males. This difference in trial omissions was also observed across all doses of amphetamine. At the 1.0 and 1.5 mg/kg doses of amphetamine, females displayed significantly less locomotor activity during shock delivery than males. Finally, there was a significant Sex × Dose interaction on shock reactivity, such that females showed significantly less locomotor activity during shock delivery relative to males at the highest dose of amphetamine. Asterisks indicate a significant difference between males and females. A cross indicates a significant Sex × Dose interaction.

Effect of Shock Titration for Body Weight on Risky Decision Making in Males and Females

One interpretation of the greater risk aversion in females is that they perceive the shock differently than males due to their smaller body weights. The fact that there was no significant correlation between body weight and mean percent choice of the large, risky reward (controlling for sex, r = .18, p = .35) argues against this possibility (see also Mitchell et al., 2014). To address this issue more directly, however, shock intensities were adjusted as a function of body weight. To further assess differences between males and females in risk-taking behavior, we analyzed latencies to press each lever during forced choice trials (Figure 2C). While there was no main effect of Lever (small, safe versus large, risky), F(1, 25) < 0.01, p = .95, there was a significant main effect of Sex, F(1, 25) = 26.04, p < .01, as well as significant Lever × Sex interaction, F(1, 25) = 4.90, p = .04, and Sex × Block × Sex interaction, F(4, 100) = 8.00, p < .01, interactions. Further analyses of latencies for each lever separately revealed that while there were no differences between males and females in their latencies to press the small, safe lever—Sex, F(1, 30) = 2.29, p = .14; Sex × Block, F(4, 120) = 0.34, p = .85—females had significantly longer latencies to press the large, risky lever than males, Sex, F(1, 25) = 20.06, p < .01; Sex × Block, F(4, 100) = 12.11, p < .01. These longer latencies in females are consistent with their risk-averse behavioral profile and further indicate that females find the risky choice less valuable than the small, safe choice compared with males.
though there was not a Sex \times Block interaction, \( F(4, 56) = 0.23, p = .92 \). Finally, in contrast to the RDT with equal shock magnitudes across all rats, there were no significant differences in locomotor activity between males and females-Sex, \( F(1, 14) = 1.81, p = .20 \); Sex \times Block, \( F(4, 56) = 1.43, p = .88 \). Considered together, these data argue that sex differences in risk-taking are not due to body weight differences in the perception/sensation of the punishment (shock) associated with the large reward.

**Effects of Prefeeding on Risky Decision Making in Males and Females**

It is possible that the greater choice of the large, risky reward in males was due to greater motivation for the food reward. To address this possibility, the second cohort of rats was retrained to stability (using the same shock intensity for all rats), and then given free access to food for 24 hr prior to testing in the RDT. At the time of testing, males weighed (mean \( \pm \) SEM) 310.9 \( \pm \) 3.6 g, and females weighed 229 \( \pm \) 2.3 g. Our laboratory has previously shown that this manipulation does not alter choice behavior in the RDT in male rats, such that rats still decrease their choice of the large, risky reward as risk of punishment increases (Simon et al., 2009). Consistent with this prior work, there was no effect of satiation on choice performance, \( F(1, 14) = 1.79, p = .20 \), Figure 4, nor were there significant Sex \times Satiation, \( F(1, 14) = 0.38, p = .55 \), or Sex \times Satiation \times Block interactions, \( F(4, 56) = 1.03, p = .40 \). When performance was analyzed separately for each sex, there was neither a main effect of Satiation: males, \( F(1, 7) = 2.19, p = .18 \); females, \( F(1, 7) = 0.23, p = .65 \), nor a significant interaction between Satiation and Block: males, \( F(1, 28) = 2.32, p = .08 \); females, \( F(1, 28) = 0.65, p = .63 \). However (and consistent with our previous work), there was a nonsignificant trend toward an increase in omissions due to satiation in both males and females, \( F(1, 14) = 4.81, p = .05 \). There was also a main effect of sex on omissions due to satiation, \( F(1, 14) = 6.44, p = .02 \), as females omitted significantly more than males when satiated. There was, however, no Sex \times Satiation interaction, \( F(1, 14) = 0.10, p = .76 \).

**Effects of Sex on Lever Pressing for Food Reward**

As another test of food motivation, rats in cohort 1 were tested on a series of ascending fixed ratio schedules of reinforcement (FR1, FR3, FR10, and FR20). In addition, we collected vaginal samples from females after each session to determine whether lever pressing was influenced by estrous cycle. Rats were tested on each FR schedule until each phase of the estrous cycle had a corresponding FR test session. At the time of FR testing, males weighed (mean \( \pm \) SEM) 313.3 \( \pm \) 10.8 g on FR1, 328.3 \( \pm \) 7.8 g on FR3, 343.1 \( \pm \) 3.3 g on FR10, and 350.7 \( \pm \) 2.9 g on FR20. Females weighed 259.3 \( \pm \) 6.1 g on FR1, 256.8 \( \pm \) 4.2 g on FR3, 265.2 \( \pm \) 3.4 g on FR10, and 276.5 \( \pm \) 6.6 g on FR20. Males pressed significantly more than females on each FR schedule (\( p \)-values < .05; Figure 5A). However, there was no FR Schedule \times Cycle interaction, \( F(9, 54) = 0.99, p = .46 \), Figure 5B, indicating that estrous cycle did not influence instrumental responding under these conditions. Even though males and females differed in lever pressing for food, there were no significant correlations between numbers of lever presses on any of the FR schedules and average choice performance in the RDT (controlling for sex; FR1, \( r = -0.24, p = .39 \); FR3, \( r = .27, p = .33 \); FR10, \( r = .22, p = .44 \); FR20, \( r = .22, p = .43 \)). The lack of such relationships argues against the possibility

![Figure 3](image-url)  
**Figure 3.** Performance in the risky decision making task with shock intensities adjusted for body weight. Male rats chose the large, risky reward significantly more than female rats when shock intensities were adjusted for each rat according to body weight (1.0 mA/kg). Data (mean \( \pm \) SEM percent choice of the large, risky reward) are averaged over the final 5 sessions in this version of the task, at which point rats displayed stable performance.

![Figure 4](image-url)  
**Figure 4.** Effects of satiation on performance in the RDT. There was no effect of 24-hr free feeding on choice of the large, risky reward in male and female rats. Data (mean \( \pm \) SEM percent choice of the large, risky reward) are averaged across rats during each of the two test sessions.

![Figure 5](image-url)  
**Figure 5.** Instrumental responding for food reward in males and females. Rats were tested under a series of FR schedules of lever pressing for food (FR1, FR3, FR10, and FR20) (A). Males lever pressed significantly more than females on each FR schedule. In females, responding across the FR schedules did not differ across phases of the estrous cycle (B). Data are represented as the mean \( \pm \) SEM number of lever presses at each FR schedule.
that differences in FR performance (and corresponding differences in food motivation) account for the sex differences observed in risk-taking. Finally, there were no significant correlations between body weight (at the time of each FR test) and FR performance: FR1, \( r = .35, p = .20; \) FR3, \( r = .26, p = .34; \) FR10, \( r = .47, p = .08; \) FR20, \( r = .28, p = .31. \)

Effects of Amphetamine on Risky Decision Making in Males and Females

Our laboratory has previously shown that amphetamine dose dependently decreases risk-taking behavior in males (Mitchell et al., 2011; Simon et al., 2009). To determine whether amphetamine differentially modulates risk-taking behavior in females, we administered amphetamine (0.3, 1.0, 1.5 mg/kg) or saline vehicle 10 min prior to test sessions in the RDT. At the time of these tests, males weighed 310.7 ± 3.3 g, and females weighed 229.7 ± 3.3 g. Consistent with our previous findings, amphetamine decreased risk-taking, \( F(3, 42) = 23.39, p < .001, \) Figure 6, with the greatest effect occurring at the highest dose. Although the Dose × Sex interaction only neared significance, \( F(3, 42) = 2.34, p = .09, \) there was a significant Dose × Sex × Block interaction, \( F(12, 168) = 3.11, p = .001, \) indicating that different doses of amphetamine affected males and females differently across the five blocks in the RDT. Separate analyses of each dose of amphetamine independently (compared with vehicle) revealed that while there was no effect of the low dose of amphetamine in males, \( F(1, 7) = 0.15, p = .71, \) or females, \( F(1, 7) = 1.00, p = .35, \) there was a significant effect of the medium dose of amphetamine on choice behavior in females, \( F(1, 7) = 17.29, p < .01, \) Figure 6B, but not males, \( F(1, 7) = 1.50, p = .26, \) Figure 6A. The highest dose of amphetamine significantly affected choice behavior in both males, \( F(1, 7) = 6.38, p = .04, \) and females, \( F(1, 7) = 53.48, p < .01. \) Amphetamine also dose-dependently increased the number of omissions, \( F(3, 42) = 16.12, p < .001, \) Table 1, an effect that was greater in females than in males-Sex, \( F(1, 14) = 27.69, p < .001; \) Dose × Sex, \( F(3, 42) = 7.32, p < .001. \) In contrast, amphetamine dose-dependently increased locomotor activity, \( F(3, 42) = 15.85, p < .001, \) to the same extent in males and females-Sex, \( F(1, 14) = 0.48, p = .50; \) Sex × Dose, \( F(3, 42) = 1.16, p = .34. \) Finally, amphetamine dose-dependently decreased locomotor activity during delivery of footshock, \( F(3, 42) = 10.61, p < .001, \) an effect that was significantly more pronounced in females than males-Sex, \( F(1, 14) = 9.52, p = .01; \) Sex × Dose, \( F(3, 42) = 3.66, p = .02. \) Collectively, these data show that amphetamine decreases risk-taking in both males and females, but that females are more sensitive to the effects of the drug than males.

Discussion

Emerging evidence has shown that sex differences are present in some forms of decision making in rodents, such as a rat version of the Iowa Gambling Task (IGT) and delay discounting tasks (Koot, van den Bos, Adriani, & Laviola, 2009; Perry, Nelson, Anderson, Morgan, & Carroll, 2007; van den Bos et al., 2012). The present data reveal that these sex differences extend to decision-making processes involving risk of explicit punishment. These differences were not readily accounted for by differences in body weight affecting punishment sensation, nor could they fully be explained by differences in reward motivation. These findings are significant in that they begin to identify and characterize the extent to which males and females differ in a behavioral phenotype associated with addiction as well as other psychiatric disorders (e.g., anorexia nervosa, bipolar disorder; Bechara et al., 2001; Gowin et al., 2013; Kaye, Wierenga, Bailor, Simmons, & Bischoff-Grethe, 2013; Orsini, Moorman, Young, Setlow, & Florescu, 2015; van Enkhuizen et al., 2014).

The higher level of risk-taking observed in male relative to female rats is in line with evidence in human subjects showing that males engage in more risky behavior than females (Cross, Copping, & Campbell, 2011; Killgore, Grugle, Killgore, & Balkin, 2010). For example, males exhibit more reckless driving than females and make up the largest proportion of homicide offenders in the United States. Consistent with the current findings, females, in contrast, have been shown to display greater avoidance behavior (Sheynin, Moustafa, Beck, Servatius, & Myers, 2015). Using both

**Figure 6.** Effects of amphetamine on performance in the risky decision making task in males and females. Systemic amphetamine decreased choice of the large, risky reward in male rats only at the highest dose (A). Systemic amphetamine dose-dependently decreased choice of the large, risky reward in female rats (B). Data are represented as the mean ± SEM percent choice of the large, risky reward.
human and animal models of avoidance behavior, previous work has shown that females are also slower to extinguish these avoidance behaviors than males (Beck, Jiao, Pang, & Servatius, 2010; Sheynin, Beck, Servatius, & Myers, 2014). There are several possible explanations that could account for these differences in behavior. In a recent review, Cross, Copping, and Campbell (2011) describe several theories that may account for sex differences in impulsivity, which can also be applied to understanding such differences in risk-based decision making. In particular, males may be more risk-taking because they may be less sensitive to punishment and more sensitive to reward compared with females. Conversely, females may be more risk-averse because they may be more sensitive to punishment. Evolutionarily, these traits might ensure greater reproductive success in both sexes. Punishment hyposensitivity and increased reward sensitivity might allow males to compete with other males for mates and secure resources for themselves and their offspring. Reproductive success in females, however, would require them to avoid harm to themselves and their offspring and inhibit behavior that could put them in danger. Differences in risk-taking between males and females, observed both within this study and in the real world, may reflect these different evolutionary strategies and may in fact predispose them to different psychiatric disorders [e.g., anorexia nervosa, which is associated with high levels of risk aversion, is much more prevalent in females than males (Hudson, Hiripi, Pope, & Kessler, 2007; Kaye et al., 2013)].

Another possible account for the increased choice of the large, risky reward in males is that they are more motivated to obtain food than females. Indeed, when tested on fixed ratio schedules of reinforcement, male rats lever pressed significantly more than females across all schedules. In contrast, in another control experiment, we found that prefeeding the rats on standard home cage chow for 24 hr prior to testing, which should cause satiation, did not differentially affect choice performance in males and females in the RDT. This experiment suggests that differences in hunger between males and females did not account for differences in RDT performance; however, while the food pellets used in the RDT and the home cage chow had the same nutrient composition, the rats may still have perceived them as different foods (and thus may have experienced only sensory-specific satiety; Zeeb & Winstanley, 2013). An experiment in which rats were satiated on the food pellets used in the RDT would help to address this issue. In addition to the evidence from the satiation control experiment, there were no differences in latencies to choose the small reward in the RDT between males and females, suggesting that there were no baseline differences in incentive motivation for the food reward. Consistent with this interpretation, a prior study found no sex differences in lever pressing for food on a progressive ratio schedule of reinforcement (van Hest, van Haaren, & van de Poll, 1988), which, arguably, may be a better measure of food motivation than fixed ratio responding. Despite these arguments against motivation for food accounting for the sex differences in risk-taking, it is still challenging to rule out this possibility completely. We are currently exploring the use of modified versions of the RDT that employ different reinforcers (e.g., water) that may be less sensitive to sex differences in food motivation.

It is interesting to note that in the IGT, a gambling-based decision-making task, males tend to choose the less risky, but more advantageous long-term option, and females tend to choose the more risky but long-term disadvantageous option (van den Bos, Homberg et al., 2013). These findings seem to contrast with those in the current study in which males showed greater risk taking than females. There are several possible ways in which to reconcile these differences. First, the risks associated with the net gain/large reward in each task are different: in the RDT, the risk is that of physical punishment whereas in the IGT, it is the risk of lost opportunity (see Orsini, Moorman et al., 2015 for discussion of this issue). Second, the differences in sex effects in these tasks could be due to the use of different strategies used to solve the tasks. In contrast to the RDT, which is conducted across multiple sessions and likely reflects informed choice, the IGT is conducted in a single session and, thus, is thought to assess the process by which a subject gathers information about task contingencies and learns the most advantageous strategy (van den Bos et al., 2012). Previous work has shown that females require more trials in the IGT than males before developing a preferential strategy (Bolla, Eldreth, Matoschik, & Cadet, 2004; van den Bos, Davies et al., 2013; van den Bos, den Heijer, Vlaar, & Houx, 2007; van den Bos, Homberg et al., 2013). This could appear as though females are more “risky”; however, it could also reflect the fact that they spend more time in the “information gathering” phase in which they are evaluating all available options. Hence, rather than being more risky in their IGT performance, females may simply be using a different strategy than males to determine the best option. Consistent with this idea, in the current study, females took longer (29 days) than males (17 days) to reach stable performance in the RDT. It is therefore possible that, like in the IGT, males and females use different strategies in the RDT to make adaptive decisions.

Neuroimaging studies have suggested that sex differences in risky decision making are due to specific differences in brain structure and function. In particular, it appears that regions of the orbitofrontal cortex are differentially engaged in males and females during performance of the IGT (Bolla et al., 2004) such that male participants have greater activity in the lateral orbitofrontal cortex (IOFC) than females. In the risky gains task, another risk-based decision-making task, the IOFC in females, but not males, is dynamically engaged during feedback periods, and this activity appears to regulate their subsequent choice (Lee, Chan, Leung, Fox, & Gao, 2009). For example, there was a negative correlation between percent signal change in the IOFC and risky choices that were preceded by punishment, and a positive correlation between percent signal change in the IOFC and risky choices preceded by risky, but unpunished, choices. Recently, our laboratory established a role for the IOFC in decision making in the face of explicit punishment, such that this region is important for the ability to accurately calculate punishment probabilities to guide choice behavior (Orsini, Trotta et al., 2015). Therefore, risk-taking differences between males and females may be a result of differential engagement of the IOFC during different parts of the decision-making process (e.g., choice points vs. feedback periods). Future experiments are aimed at investigating this possibility.

Interestingly, estrous cycle had no effect on risk-taking behavior in females. This is perhaps surprising given the wealth of evidence documenting changes in behavioral responses to drugs of abuse across the estrous cycle (Becker, 1999; Evans, Haney, & Foltin, 2002; Festa & Quinones-Jenab, 2004; Jackson et al., 2006; Justice & de Wit, 1999; Quiñones-Jenab, Ho, Schlussman, Franck,
Amphetamine can potentiate the impact of aversive stimuli (such as footshock punishment) on choice behavior, and appetitive cues are also effective in eliciting accumbens dopamine release (Cacciapaglia, Saddoris, Wightman, & Carelli, 2012; Day, Jones, Wightman, & Carelli, 2010; Saddoris et al., 2015; Sugam, Day, Wightman, & Carelli, 2012). A potential resolution may be found in recent data showing that dopamine is released in the nucleus accumbens prior to successful (but not unsuccessful) avoidance of a shock in a signaled avoidance task (Oleson, Gentry, Chioma, & Cheer, 2012), suggesting that elevated dopamine signaling is necessary for avoiding adverse outcomes (see Orsini, Moorman et al., 2015 for further discussion). Irrespective of amphetamine’s mechanisms of action, the present data raise the possibility that differences in sensitivity to dopamine neurotransmission in males and females may partially account for the observed sex differences in risk-taking. Such a conclusion could be viewed as somewhat surprising, however, as estradiol modulates dopaminergic function (Becker, 1999; Bobzean et al., 2014; Thompson, 1999), yet there were no discernable effects of estrous phase on risk-taking in females. Future studies are warranted to determine whether other endocrine mechanisms independent of the estrous cycle mediate the increased sensitivity to amphetamine in females.

It appears that the greater risk aversion in females is contradictory to patterns of drug use observed in females. For example, females escalate drug use and progress from drug use to dependence more rapidly, and are more likely to relapse, compared with their male counterparts (Bobzean et al., 2014; Lynch, 2006). Given that higher levels of risk-taking in drug-naive male rats predict greater subsequent cocaine self-administration (Mitchell et al., 2014), these data might predict that females would show greater risk-taking than males. One way to reconcile this discrepancy is to consider that females may display greater risk-taking after initiating drug use. We found previously that in addition to the predictive relationship between risk-taking and cocaine self-administration, cocaine self-administration causes a further increase in risk-taking in male rats (Mitchell et al., 2014). It is possible that females may make this transition more quickly than males, which could account for their rapid progression from drug use to dependence. It is as of yet unknown whether sex differences in risk-taking are evident following chronic drug use, but future experiments are aimed at addressing this question as it may help to explain why females are more vulnerable to relapse than males.

In summary, the findings from these studies indicate that males and females differ in decision making involving risk of punishment, with males exhibiting greater risk-taking than females. These results have important implications not only for addiction, but also for other psychiatric diseases characterized by maladaptive increases (for example, attention-deficit/hyperactivity disorder; Ernst et al., 2003) or decreases (for example, anorexia nervosa; Kaye et al., 2013) in risk-taking. Future work will attempt to uncover the mechanisms mediating these differences in risk-taking, with the hope of developing more targeted treatments for psychiatric conditions that affect males and females differentially.

References


This document is copyrighted by the American Psychological Association or one of its allied publishers. This article is intended solely for the personal use of individual users and is not to be disseminated broadly.

SEX DIFFERENCES IN RISK-TAKING


Koot, S., van den Bos, R., Adriani, W., & Laviola, G. (2009). Gender differences in delay-discounting under mild food restriction. Behav-


Marcondes, F. K., Bianchi, F. J., & Tanno, A. P. (2002). Determination of


Received August 10, 2015
Revision received September 15, 2015
Accepted October 7, 2015