Expectations for Antibiotics Increase Their Prescribing: Causal Evidence About Localized Impact

Miroslav Sirota
University of Essex

Thomas Round
King’s College London

Shyamalee Samaranayaka
University of Sri Jayewardenepura

Olga Kostopoulou
Imperial College London

Objective: Clinically irrelevant but psychologically important factors such as patients’ expectations for antibiotics encourage overprescribing. We aimed to (a) provide missing causal evidence of this effect, (b) identify whether the expectations distort the perceived probability of a bacterial infection either in a pre- or postdecisional distortions pathway, and (c) detect possible moderators of this effect. **Method:** Family physicians expressed their willingness to prescribe antibiotics (Experiment 1, n2 = 305) or their decision to prescribe (Experiment 2, n2 = 131) and assessed the probability of a bacterial infection in hypothetical patients with infections either with low or high expectations for antibiotics. Response order of prescribing/probability was manipulated in Experiment 1. **Results:** Overall, the expectations for antibiotics increased intention to prescribe (Experiment 1, F(1, 301) = 25.32, p < .001, ηp2 = .08, regardless of the response order; Experiment 2, odds ratio [OR] = 2.31, and OR = 0.75, Vignettes 1 and 2, respectively). Expectations for antibiotics did not change the perceived probability of a bacterial infection (Experiment 1, F(1, 301) = 1.86, p = .173, ηp2 = .01, regardless of the response order; Experiment 2, d = −0.03, and d = +0.25, Vignettes 1 and 2, respectively). Physicians’ experience was positively associated with prescribing, but it did not moderate the expectations effect on prescribing. **Conclusions:** Patients’ and their parents’ expectations increase antibiotics prescribing, but their effect is localized—it does not leak into the perceived probability of a bacterial infection. Interventions reducing the overprescribing of antibiotics should target also psychological factors.

Keywords: antibiotics prescribing, subjective probability, clinical decision-making, nonclinical factors, probability distortion

Supplemental materials: http://dx.doi.org/10.1037/hea0000456.supp

In the most comprehensive report to date on antimicrobial resistance, the World Health Organization (WHO) has warned about increasing antibacterial resistance (i.e., the resistance of a microorganism to an antibacterial drug) as a real and present threat to public health (WHO, 2014). Without urgent action to mitigate the consequences of bacterial resistance, we could be heading toward a “postantibiotic era” in which even minor injuries could become life threatening. The consequences are not only at a population level but are also for individual patients, causing resistance to that antibiotic (Costelloe, Metcalfe, Lovering, Mant, & Hay, 2010). The present paper aims to contribute toward the goal of mitigating the consequences of bacterial resistance by providing causal evidence of clinically irrelevant but psychologically important factors affecting the overprescribing of antibiotics.

The inappropriate and excessive use of antibiotics remains one of the main causes of antibacterial resistance (Hansen, Hoffmann, McCullough, Van Driel, & Del Mar, 2015; Laxminarayan et al., 2013). For example, in the United Kingdom, most antibiotics are prescribed in primary care for respiratory tract infections (RTIs) such as acute otitis media, acute sinusitis, and the common cold (Hansen et al., 2015; van den Broek d’Obrenan, Verheij, Numans, & van der Velden, 2014). These infections are very common (>50% of adults experience RTI symptoms during a 6-month period; e.g., McNulty, Nichols, French, Joshi, & Butler, 2013), but these are mostly viral in origin and self-limiting. Therefore, antibiotics are seldom warranted (Cals et al., 2007).

Nonclinical factors, such as physicians’ diagnostic uncertainty, patients’ expectations for antibiotics, and physicians’ assumptions regarding these expectations, increase the overprescribing of anti-
biotics (Cals et al., 2007; Cockburn & Pit, 1997; Coenen, Michiels, Renard, Denekens, & Van Royen, 2006). Many patients overestimate the effectiveness of antibiotics and, in turn, “motivate” their physicians to prescribe them (Hansen et al., 2015; Hoffmann, Ristl, Heschl, Stelzer, & Maier, 2014). Most patients who expect antibiotics are prescribed them (McNulty et al., 2013). Patients are less satisfied in practices with a more frugal approach to antibiotic prescribing (Ashworth, White, Jongmsma, Schofield, & Armstrong, 2016). In a survey of family physicians, 55% reported pressure to prescribe antibiotics. 45% had prescribed antibiotics for a viral infection knowing that they would be ineffective, and 44% admitted that they had prescribed antibiotics to get a patient to leave the consulting room (Cole, 2014).

The up-to-date evidence on the role of nonclinical factors in the overprescribing of antibiotics features two limitations. First, the evidence is noncausal in nature. In a typical patient study, patients report their prior expectations after the consultation. Likewise, in a typical physicians’ study, physicians retrospectively report their beliefs about the patients’ expectations. Second, the evidence does not inform us about the scope of the impact. The effect of nonclinical factors might be restricted to the specific act of prescribing antibiotics (hereafter, localized impact) or it could also be generalized into the related domains such as the subjective probability of the related diagnostic category (hereafter, global impact). For instance, a physician prescribing antibiotics upon request for a patient with viral otitis media might rationalize her prescription by increasing the subjective perception of the bacterial cause of otitis media.

The psychological literature supports the possibility of such a “leakage”: it offers indirect evidence and plausible psychological mechanisms. Indeed, physicians have overestimated a probability of streptococcal infection in patients presenting with clinical symptoms of a sore throat, and the physicians who treated with antibiotics before the throat culture results assigned a higher probability to streptococcus infection than those who did not (Poses, Cebul, Collins, & Fager, 1985). This could indicate that the treatment decision affected the physicians’ attribution of the probability of bacterial infection.

In terms of mechanisms, prior research has identified two pathways by which the nonclinical factors could affect the perceived probability: a direct and an indirect pathway. The direct, predecisional pathway postulates that the perceived probability is affected before the decision is made: the higher probability causes the decision. For example, prior research has found that the perceived severity of an outcome increased the perceived probability of the outcome (Harris, Corner, & Hahn, 2009; Juanchich, Sirota, & Butler, 2012; Vosgerau, 2010; Wallsten, 1981). Patients’ expectations for antibiotics might be perceived as signals of clinical severity and, in turn, “leak into” the perceived probability of the bacterial infection. Aligned with the loss asymmetry account, the physicians might have elevated the probability of a bacterial infection, which will cause the higher willingness to prescribe antibiotics—in other words, physicians might prefer to err on the side of caution and prescribe antibiotics to such patients (Weber, 1994). The indirect, postdecisional pathway postulates that the perceived probability is affected as a result of a postdecisional distortion: the higher probability is a consequence of the decision (e.g., Boiney, Kennedy, & Nye, 1997; Festinger, 1957; Levy & Hershey, 2006, 2008). Patients’ expectations motivate physicians to increase the prescribing of antibiotics and, in turn, might affect the perceived probability of a bacterial infection via the process of rationalization of the prescribing behavior. Indeed, prior research has found that people have distorted medical probabilities to justify their decisions regarding the desired treatments (Levy & Hershey, 2006, 2008).

A better understanding of prescription behaviors and their scope would provide some insights into the underpinning mechanisms. It could also inform the theories of clinical decisions, such as the threshold theory, by illuminating the nonclinical determinants of the decision threshold (Elstein & Schwartz, 2002; Pauker & Kassirer, 1980). More importantly, it would enable us to tailor cost-effective interventions for reducing the prescribing of antibiotics by targeting the effect of nonclinical factors in physicians as well as in patients.

The Present Research

In the present experiments we set up three main aims to fill in the gaps previously outlined. First, to address the lack of causal evidence, we manipulated the effect of expectations of antibiotics on family physicians’ willingness to prescribe antibiotics (Experiments 1 and 2). We hypothesized that the expectations would increase the physicians’ willingness to prescribe antibiotics. Second, to address missing evidence about the scope of the effect, we investigated whether the expectations also affect—directly or indirectly—the subjective probability of a bacterial infection (Experiment 1). To accomplish this, family physicians assessed the perceived probability of a bacterial infection and their willingness to prescribe antibiotics on separate screens and in different response orders. The localized-effect hypothesis predicts that the expectations will only affect the willingness to prescribe antibiotics whereas the global-effect hypothesis predicts that the expectations will also affect the perceived probability of a bacterial infection (whether directly or indirectly). Any interaction effect of the expectations and response order on the perceived probability would indicate activation of either a direct or an indirect pathway. If the expectations affect the probability in the “probability—prescription” order condition, then they directly affect the probability. If the expectations affect the probability in the “prescription—probability” order condition, then they indirectly affect the probability. Third, to explore the role of moderators in the expectations effect, we focused on the moderating role of the physicians’ practicing experience and the subjective probability magnitude (Experiments 1 and 2).

Experiment 1

Method

Participants. We powered the experiment to detect a small-to-medium effect size (\(r = .17 \equiv \eta_p^2 = 0.03 \)), the effect size assumed in other vignette-based studies of clinicians (e.g., Eva, Link, Lufey, & McKinlay, 2010). Given that \(\alpha = .05 \) and \(\beta = .80 \) for a \(2 \times 2 \) between-subject analysis of variance (ANOVA), such a power analysis resulted in a sample size of 274 participants (Cohen, 1988). The sample was adjusted by an additional 10% to account for a possible attrition rate.
Practicing family physicians were recruited via an email invitation to the physicians who took part in the previous studies performed by the research team. In the email, we encouraged potential participants to forward the invitation to their colleagues. We also received help with recruitment from local clinical research networks around the United Kingdom, who contacted primary care clinics on our behalf. Only certified and practicing family physicians were eligible to participate (i.e., participants had to provide a valid email address from the National Health Service in the United Kingdom to receive their reimbursement). Because of the various sources of the invitation emails and the implemented snowballing technique, it would be misleading to estimate a response rate for the participants. We recorded 382 attempts to complete the questionnaire. A total of 305 family physicians (50.2% of who were male; 18.4% practiced in an inner city, 46.9% in an urban area, and 18.4% in a rural area) completed this task. The years of experience since the certification ranged from 0 to 40 years ($M = 10.5$, $SD = 9.2$ years). Upon completion of a 20-min questionnaire administered online, comprising hypothetical patient vignettes—the vignette presented here and some other unrelated vignettes concerning cancer detection presented elsewhere (Sirota, Kostopoulou, Round, & Samaranayaka, in press)—participants received a £20 Amazon voucher as a token of appreciation.

Design. A 2 (antibiotics expectations: low vs. high) × 2 (response order: probability first vs. prescribing first) factorial between-subject design was used with the probability of a bacterial infection of a hypothetical patient and a willingness to prescribe her antibiotics as dependent variables. The high expectation for antibiotics was induced by presenting the idea that the patient would soon be participating in an important sporting event, and this was accompanied by an indirect request for action from the patient’s mother (see the full version in the online supplemental Appendix). The aim of this manipulation was to create a belief that the patient was requesting antibiotics to resolve the action; our informal qualitative pretest confirmed this assumption. The response order was manipulated by presenting either the bacterial probability question first, and then the question on antibiotics prescribing, or presenting them in a reversed order. The second question was always depicted unexpectedly on the next page. The random allocation to one of the four conditions was achieved using randomized.org; Urbania and Pious (2013).

Materials and procedure. After providing informed consent, participants diagnosed and managed five hypothetical patients (see details in Sirota et al., in press). One of them, a 15-year-old competitive swimmer called Sarah, presented with symptoms of acute otitis media. Sarah presented either with a finished swimming season (low antibiotics expectations) or with forthcoming swimming competitions that were felt to be important for her future career—information that was stressed by her mother who was requesting some action (high antibiotics expectations). Participants assessed the probability of a bacterial infection and expressed their willingness to prescribe antibiotics in a counterbalanced (and unexpected) response order. Participants assessed the probability of a bacterial infection (“How likely is it that Sarah has a bacterial infection?”) by positioning a cursor on a visual analog probability scale (increments of 1) ranging from 0% (anchored as bacterial is impossible, viral is certain) via 50% (anchored as bacterial and viral are equally likely) to 100% (anchored as viral is impossible, bacterial is certain). Participants expressed their willingness to prescribe antibiotics (“Would you prescribe antibiotics for Sarah to be taken from today?”) by selecting their option on a Likert scale ranging from 0 (anchored as definitely would not) to 10 (anchored as definitely would). Participants then completed the other vignettes and answered a few sociodemographic questions (i.e., experience, gender, and area of practice). We conducted the study in accordance with the ethical standards of the American Psychological Association.

Statistical analyses. To test the effect of antibiotics expectations and presentation order on prescribing and perceived probability, we planned to use two independent two-way ANOVAs. Because not rejecting the null hypothesis does not logically entail accepting the null hypothesis, we quantified the evidence to support the null or alternative hypothesis by computing a JZS Bayes factor (BF) ANOVA with default prior scales using the “Bayes-Factor” package in R (Morey & Rouder, 2015; Rouder, Morey, Speckman, & Province, 2012). This analysis was not planned but performed as a consequence of finding the null results. In generic terms, a BF is the ratio of the probability of the data given Model A (e.g., H_A) to the probability of the data given Model B (e.g., H_B). Thus, the BF expresses the ratio of the marginal likelihood of the data under Model A (e.g., H_A expectation effect model) and Model B (e.g., H_0 intercept-only model) and allows us to quantify how many times the data are likely to occur under H_A compared with H_0 or vice versa. For example, if the value of BF_{10} is 5, then the data are 5 times more likely to occur under H_A. A Bayes factor of BF_{10} with a value <1 indicates that H_0 is more likely, and a value >1 indicates that H_A is more likely. Furthermore, the BF values may also be interpreted as evidence categories; for example, BF_{10} values between 1 and 3 indicate anecdotal evidence to support the alternative hypothesis whereas values >10 indicate decisive evidence to support the alternative hypothesis. The evidence categories are described in the footnote of Table 1 (Jeffreys, 1961; Wetzels et al., 2011). Finally, to analyze the moderation effect of the experience and probability, we planned to use a moderation analysis using PROCESS (Hayes, 2013).

Results. Overall, the physicians were slightly more willing to prescribe antibiotics than not, $M = 5.3$ ($SD = 3.0$, scale 0 to 10). Manipulating the expectations for antibiotics clearly increased their willingness to prescribe antibiotics to the patient, whereas the different response order did not affect their willingness to prescribe (Figure 1A). The physicians were more willing to prescribe antibiotics to the patient when they believed she expected antibiotics, $F(1, 301) = 25.32, p < .001$, $\eta^2_p = .08$; descriptively, they were slightly more willing to prescribe antibiotics if the prescription question was presented before the probability question. However, this difference did not reach statistical significance, $F(1, 301) = 3.35, p = .068$, $\eta^2_p = .01$. The interaction effect was not significant, $F < 1$. The BF model comparisons (see Table 1) revealed that the expectations effect on the prescribing model was substantially preferred to the intercept-only model by a factor of 7,750.4 ± 0%. The expectations effect model was preferred to the full model, comprising main effects and their interaction term, by a factor of 7.9 ± 1.3%. On the other hand, the intercept model was preferred to the response order model by a factor of 2.9 ± 0% (because 1/0.341 = 2.9). This reanalysis showed that decisive evidence supports the
Table 1

Quantified Evidence for Models (BFs)

<table>
<thead>
<tr>
<th>BF numerator</th>
<th>Model 1, BF_{EF}</th>
<th>Model 2, BF_{RCF}</th>
<th>Model 3, BF_{E + RO}</th>
<th>Model 4, BF_{E + RO + E \times RO}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Willingness to prescribe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept-only model</td>
<td>7,750.4</td>
<td>.341</td>
<td>4,511.4</td>
<td>975.0</td>
</tr>
<tr>
<td>Full model E + RO + E \times RO</td>
<td>7.9</td>
<td>.0003</td>
<td>4.6</td>
<td>1</td>
</tr>
<tr>
<td>Probability</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept-only model</td>
<td>0.290</td>
<td>0.149</td>
<td>0.045</td>
<td>0.007</td>
</tr>
<tr>
<td>Full model E + RO + E \times RO</td>
<td>39.6</td>
<td>20.3</td>
<td>6.2</td>
<td>1</td>
</tr>
</tbody>
</table>

Note: BF = Bayes factors; E = expectations (Factor 1); RO = response order (Factor 2); E \times RO = interaction term of the expectations and the response order. Evidence category for BF_{01} (as suggested by Jeffreys, 1961; Wetzels et al., 2011): Evidence to support H_0: Decisive evidence (>100), very strong evidence (100–30), strong evidence (30–10), substantial evidence (10–3), anecdotal evidence (3–1). Evidence to support H_1: Decisive evidence (<1/100), very strong evidence (1/100–1/30), strong evidence (1/30–1/10), substantial evidence (1/10–1/3), anecdotal evidence (1/3–1). BF_{01} = 1/BF_{01}.

The effect of expectations on the willingness to prescribe antibiotics, and anecdotal evidence supports the null effect of the response order (see Table 1). Thus, we found decisive experimental evidence that patients’ expectations for antibiotics amplify physicians’ willingness to prescribe antibiotics regardless of the response order of the probability and prescribing question. Such findings corroborate our first hypothesis of the causal effect of patients’ expectations.

In terms of the perceived probability of a bacterial infection, physicians perceived the symptoms to be more likely caused by a viral rather than a bacterial infection (M = 40.2%, SD = 22.8% of a bacterial infection). The antibiotics expectations and response order conditions did not affect the perceived probability of a bacterial infection (Figure 1B). Descriptively, the physicians in the high-expectations condition perceived the probability of a bacterial infection to be just slightly higher than the physicians in the low-expectations condition, but this difference was not statistically significant, F(1, 301) = 1.86, p = .173, \textit{r}^2 = .01. The physicians perceived approximately the same probability regardless of the main effect of the response order, F < 1 or the interaction effect, F < 1. Thus, such findings suggest that the probability was not affected, directly or indirectly, by the patient’s high expectations for antibiotics. The BF model comparisons (see Table 1) revealed that the intercept-only model was preferred to the expectations effect model 3 times more (BF_{01} = 3.4 \pm 0%), to the response order model almost 7 times more (BF_{01} = 6.7 \pm 0%), to the main effects model almost 22 times more (BF_{01} = 22.2 \pm 1.1%), and to the full model 143 times more (BF_{01} = 142.9 \pm 2.0%). Thus, the data provide substantial to decisive evidence to support the intercept-only model against the models comprising different main and interaction effects (see Table 1). Such evidence corroborates the hypothesis about the null effect of the patient’s expectations. Taken together, our findings corroborate the localized-effect hypothesis because we found the causal effect of expectations on willingness to prescribe antibiotics, but this effect did not transfer to the perceived probability of a bacterial infection.

Two variables were considered to moderate the expectations effect on prescribing antibiotics: (a) physicians’ experience and (b) the perceived probability. More experienced physicians were more willing to prescribe antibiotics, r = .14, p = .012, even when the probability perception of bacterial infection was controlled for, r = .21, p < .001. However, further analysis excluded the option that the more experienced physicians prescribed more easily because they were more sensitive to the expectations manipulation. In that case, experience would observe a moderation of the expectations effect on willingness to prescribe, which was not the case, b = .02, 95% confidence interval (CI) [−.05, 0.09], p = .555, mean centered before the analysis (using PROCESS; Hayes, 2013). There was an independent source of the tendency to prescribe antibiotics by more experienced physicians. On the other hand, the perceived probability moderated the expectations effect on willingness to prescribe antibiotics (b = −.02, 95% CI [−.04, −.002], p = .034). Probing conditional analysis, the effect of expectations has its peak at a minimal probability level, with increasing probability of a bacterial infection losing its strength and becoming insignificant at approximately 70%. This goes against an intuitive expectation that the patient’s expectations would weigh more in a situation of diagnostic uncertainty (i.e., the middle point of the probability scale) rather than in a situation in which a bacterial
infection was unlikely (i.e., the low end of the probability scale), as was the case here.

Experiment 2

In Experiment 1, we found evidence of the effect of antibiotics expectations on willingness to prescribe antibiotics; the expectations did not influence the probability perception of bacterial disease. In Experiment 2, we addressed the three biggest limitations of the first experiment. First, we used a Likert scale to measure the willingness to prescribe instead of a more realistic choice question with two values (prescribe or not). It is possible that the antibiotics expectations effect would not translate into a more realistic prescribing decision. Furthermore, a real commitment to prescribing could also have a stronger distortion effect on the probability of a bacterial disease. Therefore, we used a dichotomous choice response question (prescribe or not) in Experiment 2.

Second, we jointly presented the mother’s and patient’s expectations for antibiotics. Evidence suggests that parents’ expectations are an important factor in antibiotics prescribing (Mangione-Smith, McGlynn, Elliott, Krogstad, & Brook, 1999). Thus, it is possible that the expectations effect is limited to the parents’ expectations. We separated the patient’s expectations from the mother’s expectations in Experiment 2 by presenting only the expectations of the patient.

Finally, in the original vignette we featured an external event (a swimming competition), but often the expectations are associated with “internal” events such as symptom burden. The use of an external event was intentional to avoid confounding the patient’s indication of expectations with the perceived probability of the disease. However, it is possible that an internal event might more strongly affect the perceived probability. To avoid the confounding variable while exploring this possibility, we added a new vignette to address this question in Experiment 2.

Method

Participants. We powered the experiment to detect a medium effect size (Hedges’ $g = 0.56 \equiv odds \ ratio [OR] = 2.75$), found in Experiment 1. We required a minimum sample size of 127 participants for a logistic regression model with a binary predictor—to detect an OR of 2.75, with 80% power at a 5% significance level. We estimated the probability of prescribing in the low-expectation condition to be 0.42 based on the dichotomizing of the willingness to prescribe antibiotics as found in Experiment 1. Conservatively, we conducted this power analysis for a two-tailed test; the actual power for the achieved sample size and one-tailed test was 0.88.

Practicing family physicians were recruited via an online panel provided by a professional recruiting company (Qualtrics). Only certified and practicing U.K. family physicians were eligible to participate. According to the information from the recruiting company, 490 invitation emails were sent out overall. Of this number, we recorded 246 accesses to the online questionnaire; 138 family physicians completed the online questionnaire (a 28.2% response rate). We excluded seven responses because they demonstrated a careless approach (Meade & Craig, 2012); they either did not pass the instructional manipulation check and/or they did not spend more than one third of the median response time on the question.

Design. A simple (antibiotics expectations: low vs. high) between-subject design was implemented in two different patients’ vignettes. In the first vignette (ear infection), we induced the high expectations for antibiotics by a direct request for antibiotics coming directly from the patient participating in an important sporting event (i.e., an external event). This was similar to the vignette used in Experiment 1 but did not feature the mother. In the second vignette (cold), we induced the high expectations for antibiotics by a direct request for antibiotics expressed by a patient complaining about his symptoms of a cold (i.e., an internal event: “He insists that you help him today to recover quickly as his symptoms are really bothering him. He is keen to get back to work soon, and hopes you can prescribe him antibiotics today”).

In contrast with the previous experiment, the response order was fixed: the participants always saw the question on antibiotics prescribing first and the probability question second (this was depicted unexpectedly on the next page). The allocation to one of the two expectations conditions was independently randomized for each participant and vignette. The randomization was automated using an algorithm implemented in Qualtrics (randomization per block). The presentation order of the vignettes was fixed (the ear infection vignette starting always first).

Materials and procedure. After providing informed consent, participants answered three sociodemographic questions (i.e., experience, gender, and area of practice). They then diagnosed and/or managed several hypothetical patients. The first of them, an 18-year-old competitive swimmer called Sarah, presented with symptoms of acute otitis media (see the *Ear infection vignette* in the online supplemental Appendix). This hypothetical patient was virtually the same as the one described in Experiment 1, but was older, attending university, and presenting alone (not with her mother as in Experiment 1). Physicians were first asked whether they would prescribe antibiotics (“Would you prescribe antibiotics for Sarah to be taken from today?”) by selecting a “Yes” or “No” answer to the question. The presentation of the choices was randomized. They then assessed the probability of a bacterial infection (“How likely is it that Sarah has a bacterial infection?”) by positioning a cursor on a visual analog probability scale (increments of 1) ranging from 0% (anchored as *bacterial is impossible, viral is certain*) via 50% (anchored as *bacterial and viral are equally likely*) to 100% (anchored as *viral is impossible, bacterial is certain*). Afterward, participants diagnosed and managed four other hypothetical patients (cases not relevant to antibiotics prescribing), which were used as filler items. Then they saw the
second vignette: a 38-year-old financial advisor called David, who presented with a cough and symptoms of a cold (see the Cold-like symptoms vignette in the online supplemental Appendix). Participants decided whether to prescribe antibiotics and subsequently assessed the probability of bacterial disease using the same questions as in the first vignette. Finally, they were presented with the vignette serving as an instructional manipulation check (see section Participants). We conducted the study in accordance with the ethical standards of the American Psychological Association.

Statistical analyses. We planned to analyze the effect of antibiotics expectations on prescribing using a simple logistic regression and a complementary BF analysis using a contingency table with fixed margin columns, assuming independent binomial sampling within rows (Morey & Rouder, 2015). We planned to analyze the effect of antibiotics expectations on the perceived probability using an independent-sample t test and a complementary default Bayesian t test (using a Cauchy prior distribution and the prior scale \(r = .707 \); all BF analyses were conducted using “BayesFactor” package in R; Morey & Rouder, 2015). The logic behind BFs and their interpretation is described in the Method section of Experiment 1. Finally, to analyze the moderation effect of the experience and probability, we planned to use a moderation analysis using PROCESS (Hayes, 2013).

Results

Overall, 51.9% of the physicians prescribed antibiotics in the first vignette whereas only 12.2% prescribed them in the second vignette. As indicated in Figure 2, we replicated the effect of antibiotics expectations increasing the prescribing of antibiotics in the first vignette, \(OR = 2.31, 95\%\ CI [1.15, 4.70], z = 2.34, p = .019 \); we also replicated the null effect on the perceived probability, \(t(129) = -0.20, p = .842 \). Cohen’s \(d = -0.03, 95\%\ CI [-0.38, 0.31] \). The BF model comparison suggested that the non-independence model of antibiotics expectations and prescribing was approximately 3 times more likely than the independence model (no association between the expectations and prescribing), \(BF_{10} = 3.4 \pm 0\% \). Furthermore, a Bayesian default t test favored the null hypothesis approximately 5 times more than the alternative hypothesis, \(BF_{01} = 5.3 \pm 0\% \). However, we found no effect of antibiotics expectations on prescribing in the second vignette, \(OR = 0.75, 95\%\ CI [0.25, 2.11], z = -0.57, p = .572 \), and, consistently with that, no effect on the perceived probability, \(t(129) = 1.40, p = .164 \), Cohen’s \(d = +0.25, 95\%\ CI [-0.10, 0.59] \) (see Figure 2). Indeed, the BF analysis suggested that the independence model (no association between the expectations and prescribing) was 6 times more likely than the nonindependence model of antibiotics expectations and prescribing, \(BF_{01} = 6.0 \pm 0\% \). Furthermore, a Bayesian default t test favored the null hypothesis 2 times more than the alternative hypothesis, \(BF_{01} = 2.2 \pm 0\% \).

The moderation analysis showed similar, although not significant, data patterns to the first experiment. First, experience was positively correlated with prescribing in both scenarios, although these correlations were not significant (respectively, \(r_{pb} = .10, p = .237 \) and \(r_{pb} = .10, p = .242 \)). Furthermore, similar to Experiment 1, experience did not moderate the expectations effect on prescribing in the first scenario (\(b = 0.03, 95\%\ CI [-0.05, 0.11], z = 0.78, p = .438 \) nor in the second scenario (\(b = 0.03, 95\%\ CI [-0.09, 0.14], z = 0.44, p = .658 \)). Second, the perceived probability was correlated with prescribing in the first scenario, \(r_{pb} = .50, p < .001 \), and in the second scenario, \(r_{pb} = .45, p < .001 \). In contrast with the first experiment, the perceived probability did not moderate the expectations effect on prescribing in the first (\(b = 0.05, 95\%\ CI [-0.01, 0.10], z = 1.77, p = .078 \) nor in the second scenario (\(b = 0.02, 95\%\ CI [-0.03, 0.08], z = 0.88, p = .381 \).

General Discussion

In two experimental studies of family physicians, we identified three important pieces of evidence. First, we found evidence of the effect of a nonclinical factor—in this case, patients’ and parents’ expectations for antibiotics—on the willingness of physicians to prescribe antibiotics. This evidence had a causal nature and occurred regardless of the response order. Second, we observed only a localized effect of this manipulation. It only affected the willingness to prescribe antibiotics (or prescribing decisions) but not the perceived probability of a bacterial infection; the effect was absent in both response order conditions. Third, the more experienced physicians tended to be more willing to prescribe antibiotics, but not because they were more sensitive to the patient’s expectations manipulation: experience did not moderate the expectation effect. In fact, some limited evidence of Experiment 1 indicates that what did moderate the expectations effect was the perceived probability of a bacterial infection—the expectations effect declined with the increasing probability of a bacterial infection.

Our findings corroborate the previous nonexperimental findings identifying the nonclinical factors as important components in the physicians’ antibiotics prescribing behavior (Cals et al., 2007; Cockburn & Pit, 1997; Coenen et al., 2006; Cole, 2014). Although our manipulation cannot capture the variability of the nonclinical factors reported in the prior studies (e.g., Coenen et al., 2013), it does provide a unique value in providing a causal link between the expectations and the physicians’ prescribing. We did not observe the effect in the cold vignette (Experiment 2). This lack of the effect perhaps occurred because the presented clinical picture of a
cold was incompatible with antibiotics prescribing—as shown by the very low prescribing rate or perhaps because of the experimental manipulation or procedure (e.g., the direct request of the antibiotics might have caused a psychological reactance in the physicians). We hope that our methodological approach could inspire future studies that would be required to identify causal effects of other nonclinical factors. An ecologically valid vignette approach would also enable a systematic factorial design of the various nonclinical factors, which could help us to disentangle the relative contributions of the nonclinical factors.

However, our findings did not support the pathways postulated in prior research, according to which the nonclinical factors might affect the perceived probability, either directly (e.g., predecision distortion; Wallsten, 1981) or indirectly (e.g., postdecision distortion; Levy & Hershey, 2006). None of the two systematic distortions, which could escalate the overprescribing of antibiotics, have been observed in our study. It is still possible that the physicians perceived the patient’s expectations as a cue of clinical severity, but this was not severe enough to activate the loss asymmetry mechanism. On the other hand, the loss asymmetry function was activated, but it was not big enough to be measurable in the changed perceived probability. In this respect, a vignette in which the absence of antibiotics might lead to more severe consequences would be more revealing. Physicians also avoided rationalizing their prescription decisions by increasing the probability of a bacterial infection. This might have occurred because the inconsistency was externalized—attributed to the patient’s intentions (“Antibiotics are not needed, but if you want them, I can prescribe them”); therefore, the physicians did not need to strive for consistency.

Along with the theoretical importance of these pathways, our research also has important clinical implications. From a clinical point of view, nonclinical factors and, specifically, social influences might contribute to the overprescribing of antibiotics and, in turn, to the increased antibiotic resistance (Costelloe et al., 2010). This is particularly important in situations in which most of the interventions designed to reduce antibiotic overprescribing are focused on clinical guidelines (National Institute for Health Care Excellence, 2015). To reduce overprescribing of antibiotics, potential interventions should target patients’ expectations, physicians’ beliefs about these expectations, and physicians’ skills in managing these expectations. Consistently with such a conclusion, prior complex intervention studies have found the most effective interventions to be those that target patients and clinicians during consultations, facilitating shared decision-making (Coxeter, Del Mar, McGregor, Beller, & Hoffmann, 2015; Ranji, Steinman, Shojania, & Gonzales, 2008; Vodicka et al., 2013).

Despite the evidence for the expectations effect found here, overcoming three limitations could increase our confidence in the theoretical and clinical conclusions drawn here. First, researchers should focus on providing causal evidence using more ecological approaches than vignettes, such as using simulated patients and measuring actual prescribing behavior. In light of the recent evidence on the high predictive validity of vignettes, this should not be perceived as a substantial limitation (Evans et al., 2015). Second, future research should study a more complex network of variables than studied here, which will enable us to disentangle their mutual contributions, because nonclinical factors may well represent a network of different concepts. Finally, future research should investigate the effects of nonclinical factors across different diagnostic situations because the identified behavior can be specific to the physician. The endeavor to overcome these limitations will be crucial for tailoring the most effective interventions.

Conclusion

In two experiments with practicing physicians, we found evidence that patients’ expectations increase physicians’ willingness to prescribe antibiotics. Such an effect has a local nature: it does not distort, directly or indirectly, the physicians’ perceived probability of a bacterial infection. Physicians’ experience is positively associated with prescribing, but it did not moderate the expectations effect on prescribing. We encourage further experimental research into the impact of nonclinical factors on the prescribing of antibiotics and the development of interventions that take the sociocognitive context of prescribing into account.

References

Cole, A. (2014). GP's feel pressurised to prescribe unnecessary antibiotics, survey finds. British Medical Journal, 349, g5238. http://dx.doi.org/10.1136/bmj.g5238

their minds about a diagnosis. *Academic Medicine, 85*, 1112–1117. http://dx.doi.org/10.1097/ACM.0b013e3181e16103

Received March 14, 2016
Revision received October 13, 2016
Accepted October 27, 2016