Cross-Cultural Competence: The Role of Emotion Regulation Ability and Optimism

Bianca C. Trejo and Erin M. Richard
Florida Institute of Technology

Marinus van Driel and Daniel P. McDonald
Defense Equal Opportunity Management Institute, Patrick Air Force Base, Florida

Cross-cultural competence (3C) is critical for military personnel to understand and perform effectively in complex cultural environments and to interact with individuals from other cultures. The knowledge, skills, and abilities that make up 3C can result in clearer communication, build trust, and strengthen relationships in cross-cultural social contexts (Selmeski, 2009). This research investigated the role of emotional regulation and optimism in the development of 3C in military personnel. Results demonstrate that the ability to regulate emotions is positively related to 3C, both directly and through its effect on optimism.

Keywords: emotions, emotion regulation, cross-cultural competency, optimism

Supplemental materials: http://dx.doi.org/10.1037/mil0000081.supp

Military researchers and practitioners have increased their focus on cross-cultural competence (herein referred to as 3C) because of the need for conflict resolution, nation-building, and peacekeeping operations around the globe. 3C has been defined as the knowledge, skills, abilities, and other characteristics that enable learning and adapting to unfamiliar cultures (Abbe, Gulick, & Herman, 2008). These competencies are particularly important for military personnel who interact with host nationals and must adapt across cultural lines. 3C encompasses the communication and interpersonal skills that are essential to thrive in culturally diverse contexts. These skills are vital to mission operations because they often prove critical for compliance-gaining, relationship-building, and information transfer (Ruben, 1989) as well as securing intelligence and achieving mission success.

The primary purpose of the current research is to examine the role of emotion regulation ability and optimism in the development of 3C. Several researchers have called for greater attention to the role of affect in determining 3C (Matsumoto, 2009; Matsumoto & Juang, 2004; Reid, 2010; Tan, Hartel, Panipucci, & Strybosch, 2005; Yoo, Matsumoto, & LeRoux, 2006). Communication difficulties, misconceptions, deep-seated beliefs, and general uncertainty make the experience of strong emotion a common occurrence in cross-cultural contexts. Therefore, the ability to regulate such emotion and maintain positive attitudes is key to cross-cultural effectiveness. Emotion regulation is vital to interact with others, communicate effectively, and manage stress (Keltner & Haidt, 2001; Lopes, Salovey, Cote & Beers, 2005), all of which are key requirements in cross-cultural work environments.

Cross-Cultural Competence

Although 3C is a fairly new concept, numerous models have been proposed. Excellent reviews of these models can be found in Johnson,
Lenartowicz, and Apud (2006) and Mendenhall, Osland, Bird, Oddou, and Maznevski (2008). There have also been numerous studies investigating 3C in the military setting (Laurence, 2011; Russell, Crafts, & Brooks, 1995; Selmeski, 2009). Nevertheless, a limitation of most previous models of 3C is that they include several variables that could be argued to be antecedents of 3C (e.g., empathy, emotion regulation, need for closure). Indeed, one of the difficulties facing researchers in this area is the ambiguity involved in classifying a variable as an antecedent of 3C versus part of the construct itself (Campbell, Gasser, & Oswald, 1996; Dinges, 1983; Klemp, 1979). Recent task-analysis-based models of 3C (e.g., Johnston, Paris, McCoy, Severe, & Hughes, 2010; McCloskey, 2008; McCloskey, Grandjean, & Behymer, 2009) help resolve this debate by focusing on specific behavioral examples of effective performance in cross-cultural environments. A task analysis uses subject matter experts (SMEs) to determine the knowledge, skills, abilities, and other characteristics that are essential to job performance. Task analysis often includes the identification of critical incidents, or specific behavioral examples of the different levels of job performance (Goldstein & Ford, 2002). By keeping the focus on behavior, a task-analysis-based approach helps researchers separate the proximal, performance-based aspects of 3C from the more distal antecedents (e.g., personal characteristics) of 3C.

McCloskey and colleagues (McCloskey, 2008; McCloskey et al., 2009) developed a model of 3C using this approach. They conducted 50 interviews with military SMEs who had been deployed overseas, asking about their major job components during deployment and the most challenging aspects of such components. The current research is based on a model called the Framework (Johnston et al., 2010), which built on McCloskey et al.’s (2009) work. Johnston et al. (2010) presented groups of SMEs with a list of competencies based on McCloskey et al.’s (2009) task analysis and other previous research (e.g., McDonald, McGuire, Johnston, Selmeski, & Abbe, 2008) coupled with feedback and recommendations from the Defense Language Office Regional Proficiency Assessment Project (see Naval Air Warfare Center Training Systems Divisions, 2010). Johnston et al. (2010) integrated this information to produce a final set of core competencies, core enablers (antecedents), and learning recommendations. A key strength of Johnston et al.’s (2010) model is that it makes a clear distinction between personal characteristics and attitudes (considered antecedent to 3C) and the actual behavioral competencies necessary for cross-cultural effectiveness. However, despite its substantial content validity, little empirical research has been performed on the model.

The Framework identifies two broad categories of core competencies: Thinking and Connecting. Thinking competencies include cultural knowledge, organizational awareness, and cultural perspective-taking. Cultural knowledge refers to awareness of the values, social interaction norms, and religious beliefs of different cultures (van Dyne, 2005). Such knowledge then guides individuals’ behavior in cross-cultural situations. Organizational awareness is the extent to which individuals understand and apply information about the organization’s mission and functions (e.g., programs, policies, procedures) (Wisecarver, Ferro, & Hope, 2010). It includes familiarity with conflict resolution norms within and outside of the organization and the ability to interpret the social, political, and technological systems at work in the organization. Cultural perspective-taking skills involve observing and interpreting the relevancy of situational or environmental cues while taking cultural context into account (McCloskey et al., 2009; Wisecarver et al., 2010). Individuals with perspective-taking skills detect, analyze, and consider others’ points of view, and they understand how culture influences self-perception, perception of others, and behavior (Johnston et al., 2010; Russell et al., 1995).

The Connecting competencies include communication, interpersonal skills, and cultural adaptability. McCloskey (2008) defines communication skills as the “ability to both convey and receive information accurately and efficiently in cross-cultural interactions” (p. 13). Communication has been regarded as one of the most effective abilities that military personnel can possess in cross-cultural situations (Russell et al., 1995). Interpersonal skills include the ability to demonstrate respect, courtesy, and tact (Russell et al., 1995; Wisecarver et al., 2010) and the ability to persuade and negotiate with difficult or hostile people (Abbe et al., 2008).
Research has demonstrated that relationship- and rapport-building are vital to cross-cultural effectiveness (Abbe et al., 2008; McCloskey, 2008). Finally, cultural adaptability refers to the modification of one’s behavior to comply with or demonstrate respect for others’ values or customs, allowing individuals to maintain positive relationships (McCloskey et al., 2009; McDonald, McGuire, Johnston, Selmeski, & Abbe, 2008; Mendenhall, Stevens, Bird, & Oddou, 2008; Ross, MacNulty, Bencaz, Thornson, & Johnston, 2010; Russell et al., 1995). Russell et al. (1995) state that, “individuals who are adaptable are alert to social and nonverbal cues and tailor their own behavior to the situation” (p. 8).

Emotion Regulation and 3C

Cross-cultural interactions may induce various negative emotions. For example, unfamiliar customs may introduce anxiety; communication difficulties may lead to frustration; and misconceptions or prejudices may lead to fear, anger, or contempt. Thus, the ability to down-regulate such negative affective states should be paramount in the development of 3C (Matsumoto, 2009; Reid, 2010; Tan et al., 2005; Yoo et al., 2006). Yoo et al. (2006) offered indirect support for this idea, demonstrating a link between emotion regulation ability and intercultural adjustment in international students. More recently, Reid (2010) found a relationship between emotion regulation ability and cultural adjustment in military members who had been deployed. We argue that these relationships occur because emotion regulation is needed for the Connecting and Thinking competencies of the 3C Framework.

Emotion regulation ability may affect the Connecting competencies (communication skills, interpersonal skills, and cultural adaptability) because the ability to regulate emotion plays a significant role in the quality of social interaction (Keltner & Haidt, 2001). For example, emotion regulation directly affects emotional expression; thus, it affects the emotional tone of social encounters. Positive displays of emotion are more likely to elicit favorable responses from others, whereas the expression of negative emotion drives people away (Argyle & Lu, 1990; Furr & Funder, 1998). Lopes et al. (2005) posit that emotion regulation can affect the way an individual communicates and interacts with others and the manner in which he or she manages stress and conflict. Accordingly, they found that emotion regulation correlated significantly with social interaction quality (interpersonal sensitivity, prosocial tendency, reciprocal friendship nominations, and proportion of positive vs. negative peer nominations). Moreover, the ability to regulate emotion predicted the quality of social interactions even after controlling for personality and intelligence. Given the importance of social interaction quality for communication, interpersonal interactions, and cultural adaptability, individuals with higher emotion regulation ability should exhibit greater Connecting competencies.

The ability to regulate emotion is also likely to be used for increasing the frequency of positive emotions and decreasing the frequency of negative emotions. This should enhance 3C Thinking competencies because positive emotions broaden people’s thought-action repertoires, “widening the array of thoughts and actions that come to mind” (Fredrickson, 2001, p. 220). On the other hand, negative emotion tends to narrow cognition (e.g., individuals experiencing anger only think about the source of that anger). Thus, individuals who can reduce negative emotion and create positive emotions in themselves are more likely to acquire and apply cultural knowledge and organizational awareness because of their broadened thought processes. In addition, their broadened thought processes should promote a more open mind in terms of how they interpret others’ behaviors (i.e., cultural perspective-taking). Therefore, we posit that the ability to regulate emotion is also antecedent to the Thinking dimension of 3C.

The Role of Optimism

According to Marshall, Wortman, Kusulas, Hervig, and Vickers (1992), optimism is the “inclination to expect favorable outcomes” (p. 1067). In other words, optimism is the extent to which individuals perceive situations or events in their lives in a positive way. Essentially, optimism does not change the situations or events that are challenging or difficult; rather, it changes the way an individual views those particular situations or events. Most literature in this area has primarily focused on optimism as a trait. However, re-
searchers have argued that optimism is both a trait and a state (Kluemper, Little, & Degroot, 2009; Luthans, 2002). Trait optimism refers to stable individual differences in optimism whereas state optimism is based on the situation or contextual factors. The current study focuses on state optimism. Kluemper et al. (2009) found that state optimism explained additional variance above and beyond trait optimism in work-related outcomes (e.g., job strain, job satisfaction, burnout).

The Affect Infusion Model (AIM) suggests that emotional states affect the judgment process; positive emotional states often lead to more positive attitudes and negative emotional states lead to more negative attitudes (Forgas, 1995). As such, negative emotion can be expected to cause the future to be evaluated negatively whereas positive emotion should cause the future to be evaluated more positively. Assuming that individuals with greater emotion regulation ability feel less frequent negative emotion and more frequent positive emotion, they should also experience greater optimism. Therefore, we propose a positive relationship between emotion regulation ability and optimism.

Previous research also suggests that optimism should contribute to 3C. For example, Mendenhall, Stevens, et al. (2008) identified three major intercultural competency dimensions: perception management, relationship management, and self-management. As part of the self-management dimension, optimism was identified as an “important contributor to intercultural effectiveness” (p. 14). Likewise, Kealey (1996) found that positive attitude (i.e., optimism) was positively associated with intercultural effectiveness. Specifically, optimism was related to higher reports of individual satisfaction, lower stress, greater contact with local culture, and greater knowledge of cultural language.

From a theoretical standpoint, optimism should contribute to the Connecting and Thinking dimensions of 3C. First, optimistic states are likely to produce greater positive emotion, causing individuals to seek out social interaction (Fredrickson, 2001). This may explain why optimistic individuals are liked more and tend to have an overall better social support system (Brissette, Scheier, & Carver, 2002; Carver, Kus, & Scheier, 1994). Optimism itself can also be an attractive characteristic for potential partners and is important for developing social ties (Brisette et al., 2002). We argue that the improved social relationships of optimistic individuals are likely to enhance 3C Connecting competencies.

Thinking competencies should also be enhanced by optimism through increased resilience to stress. Stress and negative emotion can consume cognitive resources (Beal, Weiss, Barros, & Macdermid, 2005) that are needed for applying cultural knowledge, maintaining organizational awareness, and taking others’ perspectives. However, evidence suggests that optimists are more resilient to stress (Chan, 2004; Seligman, 1990; Strutton & Lumpkin, 1992; Tuten & Neidermeyer, 2004). Such resilience should leave them with greater resources available to contribute to 3C Thinking competencies.

Optimism should also partially mediate the relationship between emotion regulation ability and 3C because it serves as part of the upward spiral proposed by Broaden-and-Build Theory (Fredrickson, 2001). Broaden-and-Build Theory states that positive emotions broaden an individual’s thoughts and increase cognitive resources as well as physical and psychological resources, and these resources create an upward spiral that increases an individual’s overall well-being (Fredrickson, 2001). Although optimism is not a positive emotion per se, it is a mindset that can be considered a personal resource. As such, it can be expected to contribute to an upward spiral in which optimism causes more positive emotional states, which in turn build more resources, which should contribute to the Connecting and Thinking dimensions of 3C. Therefore, we expect emotion regulation ability to relate to 3C directly (as explained in the previous section) and indirectly through its effect on optimism.

Hypothesis 1: Emotion regulation ability is positively related to 3C.

Hypothesis 2: Emotion regulation ability is positively related to optimism.

Hypothesis 3: Optimism is positively related to 3C.
Hypothesis 4: Optimism partially mediates the relationship between emotion regulation ability and 3C.

Method

Participants and Procedure

Military personnel were asked to volunteer to participate in an online survey for their particular unit/branch called the Defense Equal Opportunity Management Institute’s Organizational Climate Survey (DEOCS) version 3.3. Participants were recruited at the end of this survey; those who agreed to participate followed a hyperlink to the focal survey. Responses were anonymous and not linked to the DEOCS data. The majority of the military sample (N = 1,014) was White (71.7%) and male (80%). Sixty-eight percent were enlisted members, 17% were military officers, and 11% were federal U.S. Department of Defense civilian employees. The remaining 4% indicated other jobs such as contractor, private civilian, or state employee. In addition, 27.9% of the sample indicated that they were currently assigned/deployed overseas, 25.9% had been overseas within the past year, 35.6% within the last 1–5 years, 5.9% within the last 6–10 years, and 4.8% more than 10 years ago. Of the participants, 68.9% indicated that their assignment/deployment lasted between 7 months and 5 years. Most participants (84.9%) were between 22 and 50 years old.

Emotion regulation ability. Emotion regulation ability was assessed with a shortened version of MacCann’s (2006) Situational Test of Emotion Management (STEM). The STEM is a situational judgment test (SJT) primarily focused on three different emotions (anger, sadness, and fear) and how they are managed in personal and work life. Participants respond to a series of scenarios by choosing what they perceive to be the most effective emotion regulation strategy. Answers have been rank-ordered on the basis of effectiveness based on expert opinion (e.g., counselors, emotional intelligence researchers, life coaches), theory, and prior evidence from the coping literature. Below is an example of one item:

Pete has specific skills that his workmates do not have, and he feels that his workload is higher because of this. What strategy would be the most effective for Pete?

[A] Speak to his boss about this.
[B] Start looking for a new job.
[C] Be very proud of his unique skills.
[D] Speak to his workmates about this.

For this item, choice A (a problem-solving approach) would be awarded the most points (3 points) followed by choice D (also a problem-solving approach but targeted at an individual with insufficient authority; 2 points) and choice C (reappraisal; 1 point). Choice B (avoidance) would be given zero points (see MacCann, 2006, for a more detailed explanation of the scoring rationale). The original scale contains 23 items; however, the current study used a truncated set of 11 items that was used by Reid (2010) in a military sample similar to the current one. Reid (2010) chose these items based on their relevance to the work environment (i.e., she omitted the personal life items) and then selected those work-related items with the highest factor loadings. However, in the current sample, four additional items needed to be omitted to reach an acceptable level of internal consistency (α = .64). Examination of the content of these items revealed that they may not have been particularly relevant to a military setting (e.g., emotion regulation due to feelings of job instability, threat of company shutdown). The remaining seven items all seemed to tap into the quality of emotion regulation in interpersonal situations (e.g., in the face of lack of communication or arguments). The modest internal consistency of this scale is consistent with many SJTs, which typically tap into multiple constructs (Whetzel & McDaniel, 2009), but the predictive validity of this measure has been shown to be adequate. For example, STEM scores have been found to predict emotionally oriented thinking and life satisfaction beyond general intelligence and personality.

Optimism. Optimism was assessed using the mean of three items from the Life Orientation Test (LOT; Scheier, Carver, & Bridges, 1994), revised to reflect state optimism (e.g., “Currently, I’m optimistic about my future”). Responses were on a 5-point Likert scale (1 = strongly disagree to 5 = strongly agree; α = .81).

Cross-cultural competence. To the authors’ knowledge, no measures have been developed to assess any of the recent task-
analysis-based models of 3C. Therefore, we developed the Appraisal of Cross-Cultural Competence (ACCC) specifically for this research using task statements provided in the Johnston et al. (2010) report on the Framework. For each item, participants were asked to indicate their level of competence from the perspective of their supervisor (1 = unsatisfactory to 5 = exceptional). Research has found that when subordinates use a supervisor frame of reference, there is a higher correlation between the supervisors’ performance ratings and participants’ self-assessments (Schoorman & Mayer, 2007). Because of practical constraints on the number of items we could administer, we chose 18 of these items (3 items from each of the six proposed subcomponents of the Framework). A mean score was calculated for each subcomponent, subcomponent scores were then averaged to form dimension scores (Thinking and Connecting), and the Thinking and Connecting scores were averaged to calculate overall 3C. The final set of items is available online as supplementary material.

Generalized self-efficacy. Because we asked participants to provide self-assessments of optimism and 3C, we were concerned about the possibility of inflated correlations between these variables because of common method variance. According to Spector (2006), rather than automatically assuming that correlations will be inflated because of common method bias, researchers should carefully identify and eliminate alternative explanations for results. Therefore, we directly measured the most likely source of such inflated correlations—a generalized self-efficacy factor that is likely to influence ratings of optimism and 3C. We measured generalized self-efficacy using the sum score from a 10-item measure by Schwarzer and Jerusalem (1995) (e.g., “I am confident that I could deal efficiently with unexpected events”; 1 = not at all true, 4 = exactly true; α = .93). We then modeled generalized self-efficacy as a directly measured latent methods factor according to the recommendations of Podsakoff, MacKenzie, Lee, and Podsakoff (2003) and report the structural coefficients with and without this latent method factor in the model.

Results

See Table 1 for descriptives, intercorrelations, and reliabilities. Structural equation modeling was used to test the entire hypothesized model. First, we tested a measurement model to ensure that all items loaded adequately on their respective constructs. In doing so, we compared two second-order models of 3C (see Table 2). Model 1 (two second-order factors: Thinking [cultural knowledge, organizational awareness, and perspective taking as first-order factors] and Connecting [communication, cultural adaptability, and interpersonal skills as first-order factors]) fit the data only slightly better than Model 2 (one second-order factor, six first-order factors; Δχ² = 173.13, df = 3, p < .01). However, the two second-order factors were highly

<table>
<thead>
<tr>
<th>Measure</th>
<th>M</th>
<th>SD</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Emotion regulation</td>
<td>17.55</td>
<td>3.52 (.64)</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>2. General self-efficacy</td>
<td>32.32</td>
<td>4.76 (.93)</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Optimism</td>
<td>3.80</td>
<td>0.85 (.54)</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Cultural adaptability</td>
<td>3.98</td>
<td>0.51 (.48)</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Communication</td>
<td>3.93</td>
<td>0.76 (.93)</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Interpersonal skills</td>
<td>3.97</td>
<td>0.81 (.94)</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Connecting dimension</td>
<td>3.90</td>
<td>0.71 (.94)</td>
<td>11</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>8. Organizational awareness</td>
<td>3.96</td>
<td>0.80 (.94)</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>9. Perspective-taking</td>
<td>3.96</td>
<td>0.77 (.92)</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>10. Cultural knowledge</td>
<td>3.80</td>
<td>0.81 (.92)</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>11. Thinking dimension</td>
<td>3.90</td>
<td>0.71 (.94)</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>12. Overall 3C</td>
<td>3.91</td>
<td>0.70 (.97)</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

Note. Numbers in parentheses indicate Cronbach’s α reliabilities for each measure. N = 1,014. ** Correlation is significant at the 0.01 level (two-tailed).
correlated at .91. Because of multicollinearity concerns and for the sake of parsimony, we decided to use Model 2 for the hypotheses tests.

The structural model also exhibited good fit (see Table 2), and all hypothesized paths were supported (see Figure 1 for path coefficients). The bootstrapped confidence interval (CI) for the indirect effect of emotion regulation ability on 3C through optimism did not contain zero (CI.95/.11, .20), suggesting that optimism partially mediated the effect of emotion regulation ability on 3C. Therefore, emotion regulation ability positively related to 3C both directly and indirectly through its effect on optimism.

In the figure, we also report the standardized path coefficients (in parentheses) for a model with generalized self-efficacy modeled as a directly measured latent methods factor (Podsakoff et al., 2003). As expected, the relationship between optimism and 3C decreased when generalized self-efficacy was accounted for, as did the indirect effect of emotion regulation ability on 3C through optimism (bootstrapped CI.95 = .01, .08), suggesting that common method variance did account for part of the relationship between optimism and 3C; however, these effects remained positive and significant, and the direct, positive effect of emotion regulation ability on 3C increased slightly, suggesting that these effects are robust.

Discussion

The military has acknowledged the importance of developing 3C in its personnel (“Department of Defense,” 2011–2016). Because of

![Figure 1. Standardized model coefficients. Numbers in parentheses represent structural parameters when controlling for a latent method factor (represented by generalized self-efficacy). All coefficients are significant at p < .01.](image)

Table 2

<table>
<thead>
<tr>
<th>Model</th>
<th>(\chi^2)</th>
<th>df</th>
<th>CFI</th>
<th>TLI</th>
<th>RMSEA</th>
<th>SRMR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement Model 1 (two second-order 3C factors: Thinking and Connecting)</td>
<td>865.16</td>
<td>338</td>
<td>.98</td>
<td>.97</td>
<td>.04</td>
<td>.03</td>
</tr>
<tr>
<td>Measurement Model 2 (one second-order 3C factor)</td>
<td>1,038.29</td>
<td>341</td>
<td>.97</td>
<td>.96</td>
<td>.05</td>
<td>.04</td>
</tr>
<tr>
<td>Structural model (one second-order 3C factor)</td>
<td>1,038.29</td>
<td>341</td>
<td>.97</td>
<td>.96</td>
<td>.05</td>
<td>.04</td>
</tr>
<tr>
<td>Latent method factor model (structural model with GSE used to model a latent method factor)</td>
<td>1,763.91</td>
<td>634</td>
<td>.96</td>
<td>.96</td>
<td>.04</td>
<td>.03</td>
</tr>
</tbody>
</table>

Note. CFI = comparative fit index; TLI = Tucker-Lewis index; RMSEA = root mean square error of approximation; SRMR = standardized root mean square residual; GSE = generalized self-efficacy.

This document is copyrighted by the American Psychological Association or one of its allied publishers. This article is intended solely for the personal use of the individual user and is not to be disseminated broadly.
the amplified need for conflict resolutions, nation-building, and peacekeeping around the globe. 3C is particularly important for military personnel. These employees have to interact and build relationships with host nationals, resolve interpersonal conflicts, and negotiate resources and plans (Nash, 1994). Most research on 3C has focused on cognitive components and antecedents, with relatively little work done on the affective processes that occur in cross-cultural interactions. The lack of attention to affect is surprising given the strong emotions that can occur in intercultural contexts. In addition to the need to control the negative emotion that results from uncertainty, miscommunication, or misperceptions, positive emotion is also necessary for creating resilience to cultural challenges. This research begins to address these ideas by demonstrating a positive association between the ability to regulate emotion and effectiveness in cross-cultural contexts. As expected, individuals who were more skilled at regulating emotion also reported greater 3C. Part of this relationship was direct, and part of it was explained by increased optimism. In general, these results call attention to the important role of affect in cross-cultural effectiveness. More specifically, they point to emotion regulation ability as a predictor of success in intercultural contexts. Therefore, the results have important theoretical and practical implications.

This study contributes to theory by providing some insight into the components of 3C and the affective processes that might influence it. Specifically, the ability to regulate emotion may enhance 3C directly and through its effect on optimism. To fully understand these two pathways, it is important to consider the fact that optimism reflects beliefs about the future and, as such, has a distinct cognitive component. Although these cognitions are certainly influenced by affect, they are distinct from affect and represent a separate influence on 3C.

There are also several practical implications of the links among emotion regulation, optimism, and 3C. First, these results suggest that training in emotion regulation can help develop 3C. Such training may also increase optimism in military personnel who work cross-culturally. Second, the effect of emotion regulation ability suggests that it could be useful to consider emotion regulation ability when selecting personnel for certain missions that require a large cross-cultural component. The measure of emotion regulation ability used in this study was a non-invasive and economical SJT; however, observational (e.g., Kring & Sloan, 2007) or physiological (e.g., Troy, Wilhelm, Shallcross, & Mauss, 2010) measures of emotion regulation ability might also be considered after being subjected to the proper validation. It may also be important to consider the extent to which personnel can regulate emotions without using up large amounts of resources because emotion regulation has been found to deplete self-regulatory resources (Baumeister, Bratslavsky, Muraven, & Tice, 1998). Finally, leaders may find that encouraging a more optimistic outlook (e.g., by modeling such an outlook themselves) may lead to better performance in cross-cultural settings.

This study also developed a measure of 3C that can be used in research and practice. Although the field certainly is not lacking 3C measures, there are few measures available that tap into recent, task-analysis based models of 3C. This study developed one such measure based on the Johnston et al. (2010) Framework and validated its factor structure. We hope that the existence of this measure will encourage future research into this new model of 3C. Furthermore, the measure developed in the current study can be used for personnel development to assess strengths and weaknesses in 3C. It can be used as a self-assessment, or it could easily be modified and used as a commander, peer, or 360-degree feedback instrument.

A limitation of this study is that optimism and 3C were measured via self-report; thus, some relationships in our model may be inflated because of common method variance. We took two steps to minimize this concern. First, unlike most emotional abilities research (see Matthews, Emo, Roberts, & Zeidner, 2006), our emotion regulation ability measure was not self-report. Instead, we used an ability-based SJT. Thus, the relationships between emotion regulation ability and other variables in the model are not subject to common method bias. Second, because we were unable to obtain observer ratings of 3C, we used the recommendations of Schoorman and Mayer (2007) and asked respondents to rate their 3C from their supervisor’s perspective. Framing self-report performance items this way results in ratings that are closer to observer reports. It also has the advan-
tage of measuring 3C with a different frame of reference than the other variables, reducing the likelihood of common method bias. Nevertheless, the mean scores on all of the self-report variables in our model were well above the midpoint of the scale. These high scores could be because the extensive training and experience of military personnel instills a level of confidence higher than that of the general population. Therefore, it is encouraging that our pattern of results held even after parcelling out the effects of a generalized self-efficacy latent factor. That is, although mean levels of these constructs may be higher in the current sample, the relationships between the constructs are likely to generalize beyond the current sample.

Another limitation of the current study is the modest internal consistency of the emotion regulation ability measure. Low internal consistency is common in SJTs because they tend to tap multiple constructs (Chan & Schmitt, 1997). The modest reliability of this measure may have attenuated the observed relationships between emotion regulation ability and other variables. Thus, future research may benefit from using other measures of emotion regulation ability (e.g., ratings from significant others, physiological measures) to examine similar research questions.

In conclusion, despite the plethora of theoretical models of 3C, there is a paucity of empirical research. This study contributes to the field by examining the relationships among emotion regulation ability, optimism, and 3C, serving to highlight the importance of affect in cross-cultural contexts. We also developed and began to validate a task-analysis-based measure of 3C and found support for a second-order factor model of the construct. As our world becomes more integrated and diverse, the increased need for a more integrated and diverse, the increased need for the construct of 3C becomes more critical. This research takes steps toward accomplishing those goals.

References

Fredrickson, B. L. (2001). The role of positive emotions in positive psychology. The broaden-and-build theory of positive emotions. *American Psy-
CROSS-CULTURAL COMPETENCE

285

Received August 14, 2014
Revision received April 19, 2015
Accepted April 27, 2015